Krull Dimension
نویسنده
چکیده
1 Introduction
منابع مشابه
Upper bounds for noetherian dimension of all injective modules with Krull dimension
In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings. In particular, we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.
متن کاملTopological and Logical Explorations of Krull Dimension
Krull dimension measures the depth of the spectrum Spec(R) of a commutative ring R. Since Spec(R) is a spectral space, Krull dimension can be defined for spectral spaces. Utilizing Stone duality, it can also be defined for distributive lattices. For an arbitrary topological space, the notion of Krull dimension is less useful. Isbell [23] remedied this by introducing the concept of graduated dim...
متن کاملKrull Dimension in Modal Logic
We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that Krull dimension is unable to detect. We prove that for a T1-space to have a finite modal Krull di...
متن کاملModules Whose Small Submodules Have Krull Dimension
The main aim of this paper is to show that an AB5 module whose small submodules have Krull dimension has a radical having Krull dimension. The proof uses the notion of dual Goldie dimension.
متن کاملOn co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملKrull Dimension of the Enveloping Algebra of s / ( 2 , C )
Let U denote the enveloping algebra of the simple Lie algebra ~42, C). In this paper it is shown that the Krull dimension of U (denoted ] U]) is two. If U(g) is the enveloping algebra of a finite-dimensional solvable Lie algebra g then it is straightforward to show that ) U(g)] = dim g [5, 3.8.111. The problem as to the Krull dimension of U was first mentioned by Gabriel and Nouazt [9] they sho...
متن کامل